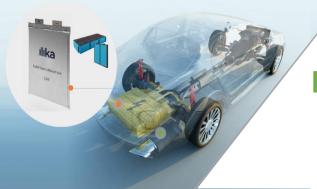


Solid State Batteries for Electric Vehicles

ili

Denis Pasero Product Commercialisation Manager


18th October 2021

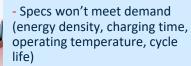
rho motion

Ilika Solid State Batteries

Stereax[®] Miniature battery technology for MedTech and Industrial IoT

Goliath Large format battery technology for Electric Vehicles, Consumer Electronics, Aerospace, Military

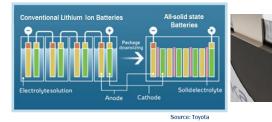
Why Solid State Batteries for EVs?

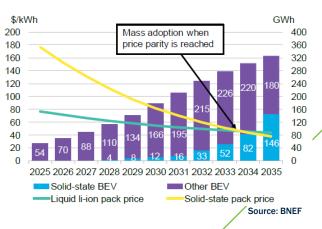


A Rapid adoption of EV

Limitations of LIB

- + Lead on cost
- + Mature technology
- Specs will plateau




- Technology is flammable
- And difficult to recycle

SOLID STATE BATTERIES

- Will only reach mass adoption with price parity and GWh-level production
- In the meantime, markets that can absorb prices for unique specs (hypercars, consumer electronics)

Features & Benefits

Toyota sets its budget!

MOTORTREND | NEWS

Toyota Outlines Solid-State Battery Tech, \$13.6 Billion Investment

Toyota isn't putting all its eggs in one pouch, so to speak. But the investment is huge.

OCTOBER 5

GM announces new battery facility to develop lithium-metal and solid-state cells

GM joins the race!

Fred Lambert - Oct. 5th 2021 7:13 am PT 🎔 @FredericLambert

New UK Consortium named (based on sulfide technology and Li metal anode)

MOU signed between Johnson Matthey, Faraday Institution, Britishvolt, Oxford University, UK Battery Industrialisation Centre, Emerson & Renwick and University of Warwick.

A consortium of seven UK-based organisations has signed a memorandum of understanding to combine ambitions to develop world-leading prototype solid-state battery technology, targeting automotive applications. Munich Uni/P3 Paper published on SSB production methods

	FULL PAPER Energy Technology www.exechnolde
D	Solid versus Liquid—A Bottom-Up Calculation Model to Analyze the Manufacturing Cost of Future High-Energy Batteries
	Joscha Schnell,* Heiko Knörzer, Anna Julia Imbsweiler, and Gunther Reinhart

UK-based SSB Ecosystem

UK Government Objectives

Increase uptake of EV to meet 2030 targets Create a UK EV manufacturing and supply chain hub

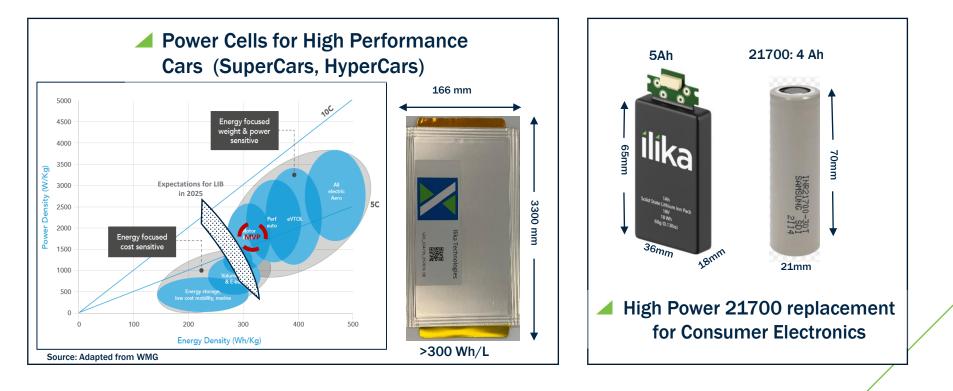
Increase private investment in R&D

Dedicated Solid State Battery Facilities

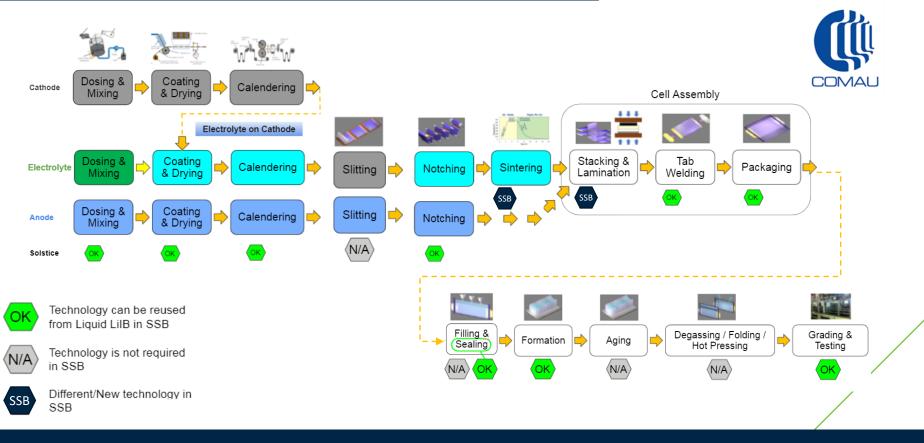
750m² footprint, including over 600m² of battery development laboratories and production equipment

Production of 1kWh per week Expansion to 10kWh/wk in 2022

Effective use of Funding

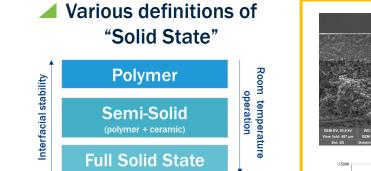


A Focus for Collaborations in the UK



Target Markets: Strategy

Manufacturing Processes



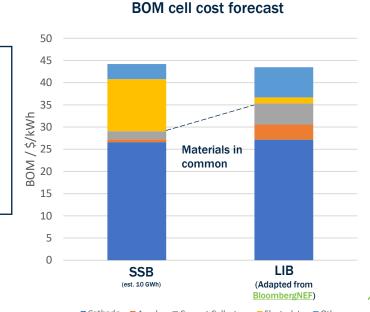
Rho Motion EV & Battery Autumn Seminar Series October 2021

ilika

Composite Materials Formulations: Electrolyte

Solid state electrolytes

Anode Current Collectors Electrolyte Others Cathode


🕜 exawatt

- llika is developing:
 - High density defect-free solid electrolyte layers

-10000 Ň

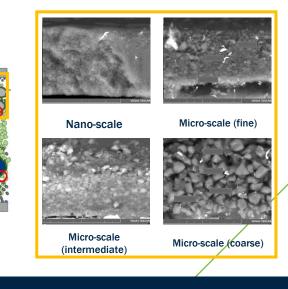
-5000

Interface and interactions with cathode components (buffers)

ELECTROLYTE

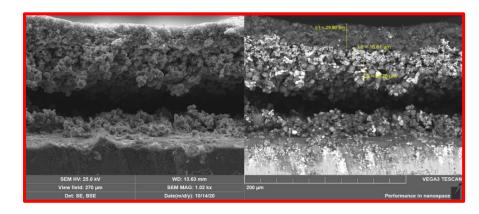
CATHODE

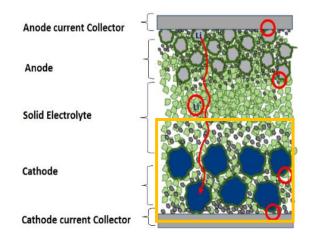
Ionic conductivity

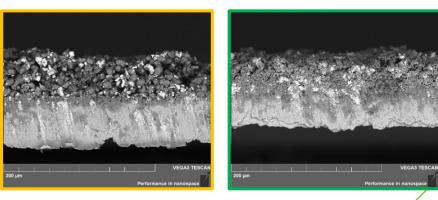

= 4.3 x 10⁻⁵ S cm⁻¹

Composite Materials Formulations: Si Anode

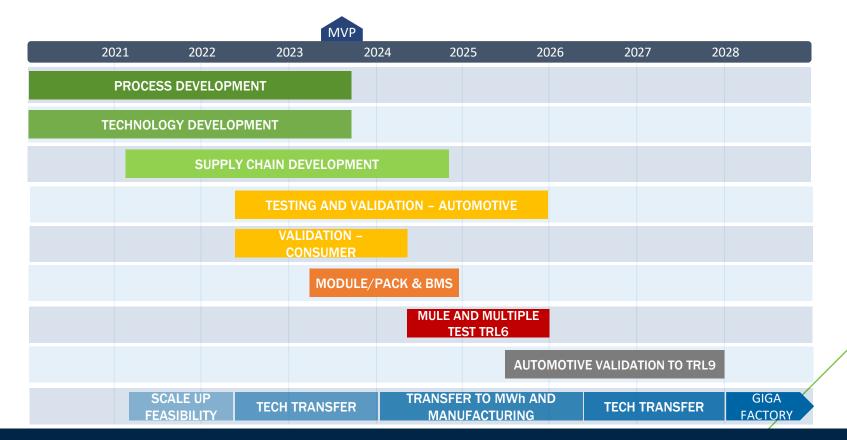
Pros	Cons	
High energy density	Li energy density is higher	
No dendrite formation	Volume expansion	
Larger range of compatible electrolytes	Loss of contact due to contraction	
Reduced materials, handling and processing costs	Decrepitation through SEI formation in liquid electrolytes	
Easier to recycle	Rates limited in initial intercalation	
	Anode current Collector	
Solutions for the	Anode	
Selection of optimum silicon	Solid Electrolyte	
Disperse silicon in a fle	,	
Contain additives that provide n	Cathode	
System designed to f	Cathode current Collector	
Optimum compression to		
Control cycling to limit change		


 Optimum particle sizes and distribution of particle sizes for composite silicon anodes




Composite Materials Formulations: Cathode

High cohesion and density to achieve stable cathode



Scale-up Plans

Thanks a lot for your time and attention!

Any questions and/or comments?

<u>www.ilika.com</u>
Contact: info@ilika.com

Ilika, Stereax and the Ilika and Stereax logos are trademarks of Ilika Technologies

Unit 10a The Quadrangle, Abbey Park Industrial Estate, Romsey SO51 9DL

Tel: +44 (0)23 8011 1400

www.ilika.com